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1 Introduction

The AdS/CFT correspondence [1–3], the celebrated conjecture relating type IIB strings
on AdS5 × S5 to N = 4 super Yang-Mills theory, has received a lot of attention given the
possibilities of extracting information from the strongly coupled gauge theory, by means
of performing perturbative computations in the gravitational dual. However, this same
property has made it difficult to find a way to prove the conjecture in all generality, and
one needs to rely in tests restricted to the BPS sector.

In particular, evaluation of four-point correlation functions of BPS operators in tree
level supergravity has allowed to check the correspondence in the limit N → ∞, large λ.
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Four-point functions are very interesting objects as they are not completely fixed by confor-
mal symmetry, and they can be given an Operator Product Expansion (OPE) interpreta-
tion, which is known to encode all the dynamical information of the theory. Moreover, their
quantum behaviour is severely restricted due to the existence of a lagragian formulation of
d = 4 SYM, so the predictions on the dynamical piece can be verified by direct computation.

The present availability of the spectrum has limited the calculations to fields arising in
the compactification of IIB supergravity on AdS5×S5. The standard AdS/CFT dictionary
relates the infinite tower of KK scalar excitations originating from the trace of the graviton
and the five-form on S5 to 1/2-BPS operators of N = 4 SYM theory. These operators are
known to have protected conformal dimensions, two- and three-point functions [4, 5]. Four-
point functions are then the simplest objects which exhibit non-trivial dynamics when going
to the strongly coupled regime. Therefore, comparison of results obtained from supergravity
with those obtained either from free or perturbative YM often reveal new insights into the
behaviour of the theory, while also constituting a probing test for the duality.

Given the technical difficulty associated with evaluating diagrams for generic operators,
supergravity induced four-point functions have been studied only for specific examples.1

The first example in the literature, in which the basic techniques for evaluating amplitudes
were developed, was the four-point function of dilaton-axion fields [8], whose dual operators
belong to the (ultrashort) current multiplet of N = 4 SYM. Four-point functions of super-
conformal primaries followed later since the cubic and quartic couplings are difficult to eval-
uate [9, 10]. The examples have been restricted to those involving four identical operators
with weight ∆ = 2, 3, 4 [11–13], and the results have shown to have the dynamical structure
predicted by the gauge theory and superconformal symmetry. The first example that ex-
plored the dynamics in the t-channel between massless fields and Kaluza-Klein (KK) excita-
tions was presented in [14], and so far, there are not known computations from supergravity
that address fields transforming in generic representations, this is, of the form [0, n, 0].

In this paper we then continue the programme of evaluating new examples of four-
point functions involving BPS operators. In this case we will consider two operators of
lowest conformal dimension ∆ = 2, and two operators of generic conformal dimension
∆ = n. This example generalises the result in [14] and is the first one involving operators
transforming in generic representations of the R-symmetry group. This constitutes a first
step towards computing the four-point function of 1/2-BPS primaries of arbitrary weight,
while also allowing the emergence of interactions between the massless graviton multiplet
and the infinite tower of KK excitations. We will start by establishing the general structure
of the amplitude by restricting the functional dependence using superconformal symmetry
and the dynamical procedure known as the insertion procedure. We then evaluate the
amplitude in AdS supergravity and compare this result against the predictions made in
the gauge theory side.

To this end, one needs to obtain the on-shell value of the five-dimensional effective
action for type IIB supergravity on AdS5 × S5 relevant for the calculation. These terms
can be found in [4, 9, 10, 15]. To calculate the on-shell action, we use the techniques

1Other known examples involving superconformal descendents can be found in [6, 7].
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in [12, 14, 16] for evaluating the AdS z-integrals. However, for the evaluation of the
effective vertices coming from the integrals over the S5, we introduce a new method, as the
direct evaluation of sums of products of SO(6) C-tensors cannot be evaluated in a closed
form when including representations depending on generic values.2 [12] We then show that
as in the previous cases in the literature, the four derivative terms in the effective lagrangian
can be re-expressed in terms of two and zero derivative terms, so the lagrangian is of σ-
model type. We also show how the resulting quartic lagrangian has a rather simple form,
after the dramatic simplification coming from adding the different contributions. Finally,
we will verify that the result for the strongly coupled four-point amplitude splits into a free
and an interacting piece, which has the structure predicted by the insertion procedure [12,
17]. This phenomenon has also been observed in all other four-point functions involving
superconformal primary operators, and is a highly non-trivial result as there is no argument
supporting this splitting in the gravitational theory. This result serves then as further
evidence for the AdS/CFT correspondence

The plan of this paper is as follows. In section 2 we consider the general structure of the
four-point amplitude of 1/2-BPS operators using the different symmetries (i.e. conformal,
crossing and R-symmetry) and we see that the dependence is contained in four functions
of conformal ratios. In section 3, we introduce further constraints on the interacting piece
from the insertion procedure, that reduces the number of independent functions from four
to one. Section 4 is devoted to the evaluation of the four-point function of interest in
the supergravity approximation. Some technical details are postponed to the appendices,
including the derivation of the quartic lagrangian and the novel method for computing
the effective interaction vertices coming from integrals on S5. In section 5 we analyse the
supergravity result in the light of the predictions obtained from the CFT side, and verify
that indeed, the supergravity-induced amplitude splits into a free and an interacting piece.
We also reveal a puzzling result pertaining to one of the coefficient functions entering
the amplitude. Finally, section 6 summarises our results and presents some interesting
problems that could be addressed in the future.

2 General structure of the four-point function

The general structure of the process we are considering is constrained by R and crossing
summetry. In this paper we are concerned with four-point functions of 1/2-BPS supercon-
formal primaries of N = 4 supersymmetric Yang-Mills theory. The canonically normalised
operators [4] with conformal dimension ∆ = k are given by

OIk(~x) =
(2π)k√
kλk

CIi1···iktr(ϕi1(~x) · · ·ϕik(~x)) (2.1)

where CIi1···ik are totally symmetric traceless SO(6) tensors of rank k and the index I runs
over a basis of a representation of SO(6) specified by k. The four-point function we wish

2And even in cases in which n > 4 it becomes very involved and one requires the use of a computer

algebra program.
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to study has the form
〈OI12 (~x1)OI22 (~x2)OI3n (~x3)OI4n (~x4)〉 (2.2)

The content of the OPE’s is given by operators in the representations arising in the tensor
of the SU(4) representations [0, 2, 0] and [0, n, 0]. This is

〈O2(~x1)O2(~x2)On(~x3)On(~x4)〉 ∈ [0, 2, 0]⊗ [0, 2, 0]⊗ [0, n, 0]⊗ [0, n, 0] (2.3)

where

[0, n, 0]⊗ [0, n, 0] =
n∑
k=0

n−k∑
l=0

[l, 2n− 2l − 2k, l] (2.4)

All the OPE channels with l = 0, 1 contain only short and semishort operators. We now
follow the ideas and methods in [12]. An appropriate basis to study the content of a four-
point function is given by the propagator basis arising in free field theory. Recall that the
propagator for scalar fields is given by

〈ϕi(~x1)ϕj(~x2)〉 =
δij

|~x12|2
(2.5)

Let us introduce the harmonic (complex) variables ui satisfying the following constraints

uiui = 0 uiūi = 1 (2.6)

These variables parametrise the coset SO(6)/SO(2)×SO(4) so that under an SO(6) trans-
formation, the highest weight vector representation transforms as ui1 · · ·uin , so projections
onto representations [0, n, 0] can be achieved by writing

O(n) = ui1 · · ·uintr(ϕi1 · · ·ϕin) (2.7)

with (n) denoting the highest weight of the representation [0, n, 0]. Scalar fields can also
be projected

ϕi1(~x1) = ϕ(1)ūi11 (2.8)

so (2.5) can be rewritten as

〈ϕ(1)ϕ(2)〉 =
u1
i1u2

i2δi1i2

|~x12|2
=

(u1
i1u2

i2)
|~x12|2

(2.9)

We can now construct four-point functions by connecting pairs of points by propagators.
For the case in hand, the amplitude will have n + 2 contractions, so the propagator basis
for (2.3) is determined from six graphs belonging to four equivalence classes, as depicted
in figure 1. Each of the propagator structures can be multiplied by an arbitrary function
of the conformally invariant ratios u and v

u =
|~x12|2|~x34|2

|~x13|2|~x24|2
v =
|~x14|2|~x23|2

|~x13|2|~x24|2
(2.10)
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Figure 1. Propagator basis for the process 〈O2(~x1)O2(~x2)On(~x3)On(~x4)〉. The graphs are arranged
in four equivalence classes. The symbol n stands for the n propagators coming out from the
corresponding vertices.

Hence, the most general four-point amplitude with the required transformation properties
is given by

〈O2(~x1)O2(~x2)On(~x3)On(~x4)〉 = a(u, v)
(u1

i1u2
i2)2(u3

i3u4
i4)n

|~x12|4|~x34|2n
(2.11)

+b1(u, v)
(u1

i1u2
i2)(u3

i3u4
i4)n−1(u1

i1u3
i3)(u2

i2u4
i4)

|~x12|2|~x34|2(n−1)|~x13|2|~x24|2

+b2(u, v)
(u1

i1u2
i2)(u3

i3u4
i4)n−1(u1

i1u4
i4)(u2

i2u3
i3)

|~x12|2|~x34|2(n−1)|~x14|2|~x23|2

+c1(u, v)
(u1

i1u3
i3)2(u2

i2u4
i4)2(u3

i3u4
i4)n−2

|~x34|2(n−2)|~x13|4|~x24|4

+c2(u, v)
(u1

i1u4
i4)2(u2

i2u3
i3)2(u3

i3u4
i4)n−2

|~x34|2(n−2)|~x14|4|~x23|4

+d(u, v)
(u1

i1u3
i3)(u2

i2u4
i4)(u2

i2u3
i3)(u1

i1u4
i4)(u3

i3u4
i4)n−2

|~x13|2|~x24|2|~x23|2|~x14|2|~x34|2(n−2)

Permutation symmetries under exchange of 1 ↔ 2 and 3 ↔ 4 reduce the number of
coefficient functions to four since

a(u, v) = a(u/v, 1/v)

b2(u, v) = b1(u/v, 1/v)

c2(u, v) = c1(u/v, 1/v)

d(u, v) = d(u/v, 1/v) (2.12)
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The harmonic variables in (2.11) can be re-expressed in terms of SO(6) C-tensors (ap-
pendix A) as

〈OI12 (~x1)OI22 (~x2)OI3n (~x3)OI4n (~x4)〉 = a(u, v)
δI1I22 δI3I4n

|~x12|4|~x34|2n

+b1(u, v)
CI1I2I3I4

|~x12|2|~x34|2(n−1)|~x13|2|~x24|2
+ b2(u, v)

CI1I2I4I3

|~x12|2|~x34|2(n−1)|~x14|2|~x23|2

+c1(u, v)
ΥI1I2I3I4

|~x34|2(n−2)|~x13|4|~x24|4
+ c2(u, v)

ΥI1I2I4I3

|~x34|2(n−2)|~x14|4|~x23|4

+d(u, v)
SI1I2I3I4

|~x13|2|~x24|2|~x23|2|~x14|2|~x34|2(n−2)
(2.13)

It is possible to compute the value of the coefficient functions using free field theory in the
large N limit (e.g. contribution form planar diagrams only). This was done in [18] and the
results are reproduced here3

a = 1 bi =
2n
N2

ci =
n(n− 1)

2N2

(
Xj1···jn−2kkXj1···jn−2ll

Xm1···mnXm1···mn

)
d =

2n(n− 1)
N2

(2.14)

where Xj1···jn is a totally symmetric rank n colour tensor, so that the value of ci, for i = 1, 2,
is dependent on a non-trivial tensor calculation.4 Notice also that d = (n − 1)bi for any
value of n and N .

3 The insertion formula

We now follow the ideas developed in [12] to restrict the dynamical piece of the four-point
function. The derivative with respect to the coupling g2

YM of the amplitude (2.2) can be
expressed as (see also [17])

∂

∂g2
YM

〈O2O2OnOn〉 ∝
∫
d4 ~x0d

4θ0〈Oτ ( ~x0)O2O2OnOn〉 (3.1)

The integration above is consistent with supersymmetry as the θ-expansion for the case
O2 terminates at four θ’s, and one can show that the five-point function in the right side
of the previous expression, gives rise to a nilpotent superconformal covariant. By following
this procedure in which we insert and additional ultrashort operator, it is possible to
extract more information about the four-point function we have been studying. As the
construction of nilpotents covariants if of technical nature, we refer to [12] for references
and the derivation of the results reproduced below.

The key idea is to assume that the nilpotent covariant must have the following form

〈Oτ ( ~x0)O2O2OnOn〉 = R2222(θ0)4F 00n−2n−2( ~x0, . . . , ~x4, u1, . . . , u4) (3.2)
3The coefficient of the disconnected piece is set to be one as a consequence of the normalisation choice

for the two-point functions.
4For n = 2, ci = 1 and for n = 3, ci = 0. For n ≥ 4 it was shown in [18] that it the value of ci can be

approximated as

ci '
2n(n− 2)

N2
' (n− 2)bi (2.15)

– 6 –
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so the five-point function is factorised into a kernel with weight 2 and an additional factor
carrying the remaining SO(6) quantum numbers, so at each point the weight is k′i = ki−2.
Note here that the Grassmann factor (θ0)4 carries the full harmonic dependence at the
insertion point. The relevant expressions are given by

R2222 = u
(u1

i1u2
i2)2(u3

i3u4
i4)2

|~x12|2|~x34|2
+ (v − u− 1)

(u1
i1u2

i2)(u3
i3u4

i4)(u1
i1u3

i3)(u2
i2u4

i4)
|~x12|2|~x34|2|~x13|2|~x24|2

+(1− u− v)
(u1

i1u2
i2)(u3

i3u4
i4)(u1

i1u4
i4)(u2

i2u3
i3)

|~x12|2|~x34|2|~x14|2|~x23|2
+

(u1
i1u3

i3)2(u2
i2u4

i4)2

|~x13|4|~x24|4

+
(u1

i1u4
i4)2(u2

i2u3
i3)2

|~x14|4|~x23|4
+ (u− v − 1)

(u1
i1u3

i3)(u1
i1u4

i4)(u2
i2u4

i4)(u2
i2u3

i3)
|~x13|2|~x14|2|~x23|2|~x24|2

(3.3)

and

F 0k′1k
′
2k
′
3 =

(
u2
i2u3

i3

|~x23|2

) 1
2

(k1+k2−k3−2)(
u2
i2u4

i4

|~x24|2

) 1
2

(k1+k3−k2−2)

×
(
u3
i3u4

i4

|~x34|2

) 1
2

(k2+k3−k1−2)

f(~x0, . . . , ~x4) (3.4)

Substitution of these expressions into (3.2) and integration over the Grassman variable θ0

lead to the following dependence on the coupling of the four-point function (2.2)

∂

∂g2
YM

〈OI12 O
I2
2 O

I3
n OI4n 〉 = uG(u, v)

δI1I22 δI3I4n

|~x12|4|~x34|2n

+(v − u− 1)G(u, v)
CI1I2I3I4

|~x12|2|~x34|2(n−1)|~x13|2|~x24|2

+(1− u− v)G(u, v)
CI1I2I4I3

|~x12|2|~x34|2(n−1)|~x14|2|~x23|2

+G(u, v)
ΥI1I2I3I4

|~x34|2(n−2)|~x13|4|~x24|4
+ vG(u, v)

ΥI1I2I4I3

|~x34|2(n−2)|~x14|4|~x23|4

+(u− v − 1)G(u, v)
SI1I2I3I4

|~x13|2|~x24|2|~x23|2|~x14|2|~x34|2(n−2)
(3.5)

with
G(u, v) =

∫
d4~x0f(~x0, . . . , ~x4) (3.6)

So comparing (3.5) with (2.13) one realises that the amplitude depends on a single function
F(u, v), satisfying

a(u, v) = uF(u, v)

b1(u, v) = (v − u− 1)F(u, v)

b2(u, v) = (1− u− v)F(u, v)

c1(u, v) = F(u, v)

c2(u, v) = vF(u, v)

d(u, v) = (u− v − 1)F(u, v) (3.7)

– 7 –
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This is a (partial) non-renormalisation theorem for the structure of the amplitude (i.e.
a dynamical constraint), so verification of this result from the supergravity calculation
constitutes an indirect test for the AdS/CFT correspondence.

4 Supergravity calculation

The precise relation between the operators in the gauge theory and the fields in the bulk
was established in [2, 3] and refined in [19–21]. The proposition is

〈exp{
∫
d4xφ0(~x)O(~x)}〉CFT = exp{−SIIB[φ0(~x)]} (4.1)

On the left hand side of (4.1) the field φ0(~x), which stands for the boundary value of the
bulk field φ(z0, ~x), is a source for the operator O(~x), and the expectation value is computed
by expanding the exponential and evaluating the correlation functions in the field theory.
On the right hand side, one has the generating functional encompassing all dynamical
processes of IIB strings on AdS5 × S5. In the supergravity approximation, SIIB is just the
type IIB supergravity action on AdS5 × S5, and it is assumed here that all the bulk fields
φ(z0, ~x) have appropriate boundary behaviour so they source the YM operators on the
left hand side. Hence in practice, one first finds the boundary data for the corresponding
gravitational fields and then computes correlation functions as a function of these values
(on-shell), by functional differentiation.

Given that we are interested in computing correlation functions of superconformal pri-
maries, we first need to identify the bulk fields whose value in the boundary serve as sources.
From looking at the representations, we see that the fields dual to superconformal primaries
are obtained from mixtures of modes from the graviton and the five form on the S5 [22]
and are denoted as sIk, with I running over the basis of the corresponding SO(6) irrep. with
Dynkin labels [0, k, 0]. The four-point function can then be determined from the expression

〈OI1k1(~x1)OI2k2(~x2)OI3k3(~x3)OI4k4(~x4)〉 =
δ

δsI1k1(~x1)
δ

δsI2k2(~x2)
δ

δsI3k3(~x3)
δ

δsI4k4(~x4)
(−SIIB) (4.2)

4.1 On-shell lagrangian

We are interested in computing (2.2) in strongly coupled N = 4 SYM theory, using the
supergravity approximation. The prescription (4.1) indicates that we need to evaluate the
on-shell value of the five-dimensional effective action of compactified type IIB supergravity
on AdS5 × S5. We write this action as

S =
N

8π2

∫
[dz] (L2 + L3 + L4) (4.3)

which involves the sum of quadratic, cubic and quartic terms. The normalisation of the
action can be derived from expressing the ten dimensional gravitational coupling as 2κ2

10 =
(2π)7g2

sα
′4 and using the volume of S5 to get the five dimensional gravitational coupling

1
2κ2

5

=
Vol(S5)

2κ2
10

=
N2

8π2l3
(4.4)

– 8 –
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with l being the AdS5 radius, which will be set to one. The quadratic terms [15, 22] read

L2 =
1
4

(Dµs2
1Dµs2

1 − 4s2
1s2

1) +
1
4

(Dµsn
1Dµsn

1 + n(n− 4)sn1sn
1)

+
1
2

(Fµν,11)2 +
1
2

((Fµν,n−1
1)2 + 2n(n− 2)(A1

µ,n−1)2)

+
1
4
Dµφνρ,0D

µφνρ0 −
1
2
Dµφ

µν,0Dρφρν,0 +
1
2
Dµφ

ν
ν,0Dρφ

µρ
0 −

1
4
Dµφ

ν
ν,0D

µφρρ,0

−1
2
φµν,0φ

µν
0 +

1
2

(φµµ,0)2

+
1
4
Dµφνρ,n−2D

µφνρn−2 −
1
2
Dµφ

µν,n−2Dρφρν,n−2 +
1
2
Dµφ

ν
ν,n−2Dρφ

µρ
n−2

−1
4
Dµφ

ν
ν,n−2D

µφρρ,n−2 +
(n2 − 6)

4
φµν,n−2φ

µν
n−2 −

(n2 − 2)
4

(φµµ,n−2)2 (4.5)

where Fµν,k = ∂µAν,k − ∂νAµ,k, and summation over upper indices is assumed, running
over the basis of the irreducible representation corresponding to the field.5 We should
point out that the fields have been rescaled in order to simplify the action. In this case,
the corresponding rescaling factors are given by

sn →

√
(n+ 1)

26n(n− 1)(n+ 2)
sn Aµ,n−1 → 2

√
n+ 1
n

Aµ,n−1 (4.6)

and all symmetric tensors are left unscaled. The cubic couplings [4, 9, 23] are given by

L3 = −1
3
〈C1

2C
2
2C

3
[0,2,0]〉s

1
2s

2
2s

3
2 −

n(n− 1)
2

〈C1
nC

2
nC

3
[0,2,0]〉s

1
ns

2
ns

3
2

−1
4

(
Dµs1

2D
νs1

2φµν,0 −
1
2

(Dµs1
2Dµs

1
2 − 4s1

2s
1
2)φνν,0

)
−1

4

(
Dµs1

nD
νs1
nφµν,0 −

1
2

(Dµs1
nDµs

1
n + n(n− 4)s1

ns
1
n)φνν,0

)
−1

2
〈C1

2C
1
nC

3
[0,n−2,0]〉

(
Dµs1

2D
νs1
nφµν,n−2 −

1
2

(Dµs1
2Dµs

1
n − 2ns1

2s
1
n)φνν,n−2

)
−〈C1

2C
2
2C

3
[1,0,1]〉s

1
2D

µs2
2A

3
µ,1 −

n

2
〈C1

nC
2
nC

3
[1,0,1]〉s

1
nD

µs2
nA

3
µ,1

−
√
n(n− 1)

2
〈C1

2C
2
nC

3
[1,n−2,1]〉s

1
2D

µs2
nA

3
µ,n−1

−
√
n(n− 1)

2
〈C1

nC
2
2C

3
[1,n−2,1]〉s

1
nD

µs2
2A

3
µ,n−1

As one can see, there are different contributions to the s and t-channels. Finally, the quartic
couplings are given by

L4 = L(0)
4 + L(2)

4 + L(4)
4 (4.7)

where the supraindex indicates contributions coming from zero, two and four-derivative
terms, which are given by

L4 = L(0)I1I2I3I4
k1k2k3k4

sI1k1s
I2
k2
sI3k3s

I4
k4

+ L(2)I1I2I3I4
k1k2k3k4

sI1k1Dµs
I2
k2
sI3k3D

µsI4k4

+L(4)I1I2I3I4
k1k2k3k4

sI1k1Dµs
I2
k2
DνDν(sI3k3D

µsI4k4) (4.8)

5We often use the notation sImk ≡ smk .
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∆2 ∆2

∆1

z

∆4

~x4

∆3

~x3~x1~x3~x1

∆3

∆4

z wz

∆1 ∆3

∆2 ∆4

~x1

~x2 ~x4 ~x2 ~x4 ~x2

m2

~x3

w∆

Figure 2. Witten Diagrams for the s-channel process. (a) exchange by a scalar with m2 = −4 (b)
exchange by a massless vector (c) graviton exchange.

The explicit form of these terms has been computed in [10]. For our case, two of the ki’s
are equal to 2 and the other two are equal to n. This allows for six possible permutations,
where the indices Ii run over the basis of the representation [0, ki, 0] which is being summed
over. The less trivial part of the calculation is to compute the explicit coefficients of these
terms. It can be shown, however, that the relevant interactions can be reduced to a simple
expression, as it occurs in all the examples that have been computed previously. We refer
to appendix E for the details, and reproduce the final expression here

L4 = −1
4

(C1234 + S1234)s1
2Dµs

2
2s

3
nD

µs4
n

+
1
8
n(−δ12

2 δ
34
n + (6 + n)C1234 + (3n− 4)S1234 − nΥ1234)s1

2s
1
2s

3
ns

4
n (4.9)

which can be shown to reproduce the n = 3 case in [14]. The quantities in this expression
will be defined later. It should be noted that all four derivative terms disappear, which is
consistent with the fact that this is a sub-subextremal process, i.e. k1 = k2 + k3 + k4 − 4,
as indicated in [24, 25].

Now that the relevant terms in the lagrangian have been specified, it remains to com-
pute its on-shell value. From the couplings, one can determine the diagrams that need to
be computed. In the s-channel, one has a scalar exchange of sI2, a vector exchange AIa,[1,0,1]

and a graviton exchange, φab,[0,0,0]. In the t-channel, one has a scalar exchange of sIn, a
vector exchange AIa,[1,n−1,1] and a massive symmetric tensor φab,[0,n−2,0]. Finally one has
contact diagrams contributing to the process. The Witten diagrams for the s-channel are
shown on figure 2. The corresponding diagrams for the t-channel and the contact diagram
are shown on figure 3.

It is convenient to introduce the currents

Tµν = D(µsk1Dν)sk1 −
1
2
gµν

(
Dρsk1Dρsk2 +

1
2

(m2
k1 +m2

k2 − k3(k3 + 4))sk1sk2

)
Jµ = sk1Dµsk2 − sk2Dµsk1 (4.10)

where k1, k2, k3 are the conformal weights of the corresponding scalar operators and the
primaries here have the appropriate weight depending of the channel one is considering.
One then represents the solution to the equations of motion in the form

sk = s0
k + s̃k Aµ = A0

µ + Ãµ φµν = φ0
µν + φ̃µν (4.11)
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(d)

fkm2
k∆

~x4~x2

~x1

∆1

∆4∆2
w

z
∆3

~x3 ~x1 ~x1 ~x1~x3 ~x3 ~x3

~x2 ~x4 ~x2 ~x4

~x2 ~x4

z

w

∆3
z

w

∆3

w

∆1 ∆3

∆2 ∆4

∆1

∆2 ∆4 ∆2

∆1

∆4

(a) (b) (c)

Figure 3. Witten Diagrams for the t-channel process. (a) exchange by a scalar of mass m2 =
∆(∆ − 4) (b) exchange by a vector of mass m2

k = k2 − 1 (c) exchange by a tensor field of mass
fk = k(k + 4) (d) Contact diagram.

where s0
k, A

0
µ and φ0

µν are solutions to the linearised equations with fixed boundary con-
ditions and s̃k, Ãµ and φ̃µν represent the fields in the AdS bulk with vanishing boundary
conditions. It is then possible to express these fields in terms of an integral on the bulk,
involving the corresponding Green function. For the s-channel process one needs

s̃5
2(w) = 2〈C1

2C
2
2C

5
[0,2,0]〉

∫
[dz]G2(z, w)s1

2(z)s2
2(z)

+n(n− 1)〈C1
2C

2
nC

5
[0,n,0]〉

∫
[dz]Gn(z, w)s1

2(z)s2
n(z)

Ã5
µ,1(w) =

1
4
〈C1

2C
2
2C

5
[1,0,1]〉

∫
[dz]Gµν(z, w)Jν(z)

φ̃5
µν,0(w) =

1
4
〈C1

2C
3
2C

5
[0,0,0]〉

∫
[dz]Gµνµ′ν′(z, w)Tµ

′ν′(z) (4.12)

where the z-integral is being done on the vertex involving the O2’s. For the t-channel pro-
cess, the bulk fields couple to a ∆ = 2 primary and a ∆ = n primary, so the z-integrals read

s̃5
n(w) = 2n(n− 1)〈C1

2C
3
nC

5
[0,n,0]〉

∫
[dz]Gn(z, w)s1

2(z)s3
n(z)

Ã5
µ,n−1(w) =

1
2

√
n(n− 1)

2
〈C1

2C
3
nC

5
[1,n−2,1]〉

∫
[dz]Gµν(z, w)Jν(z)

φ̃5
µν,n−2(w) =

1
2
〈C1

2C
3
nC

5
[0,n−2,0]〉

∫
[dz]Gµνµ′ν′(z, w)Tµ

′ν′(z) (4.13)

and the currents are defined with the appropriate weights. We will drop the tilde in the
following. Using the expressions above, we arrive at the following expression for the on-
shell value of the action for each of the channels we are considering. For the s-channel, the
amplitude is determined by

Ls−channel = −n(n− 1)〈C1
2C

2
2C

5
2 〉〈C3

nC
4
nC

5
2 〉
∫

[dz]s1
2(z)s2

2(z)G(z, w)s3
n(w)s4

n(w)

− n
24
〈C1

2C
2
2C

5
[1,0,1]〉〈C

3
2C

2
4C

5
[1,0,1]〉

∫
[dz]Jµ(z)Gµν(z, w)Jν(w)

− 1
24
〈C1

2C
2
2C

5
[0,0,0]〉〈C

3
nC

4
nC

5
[0,0,0]〉

∫
[dz]Tµν22 (z)Gµνµ′ν′(z, w)Tµ

′ν′
nn (w)

(4.14)
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Figure 4. Graphic representation of a D-function.

and for the t-channel one has

Lt−channel = −n2(n− 1)2〈C1
2C

3
nC

5
n〉〈C2

2C
4
nC

5
n〉
∫

[dz]s1
2(z)s3

n(z)G(z, w)s2
2(w)s4

n(w)

−n(n− 1)
23

〈C1
2C

3
nC

5
[1,n−2,1]〉〈C

2
2C

4
nC

5
[1,n−2,1]〉

∫
[dz]Jµ(z)Gµν(z, w)Jν(w)

− 1
23
〈C1

2C
3
nC

5
[0,n−2,0]〉〈C

2
2C

4
nC

5
[0,n−2,0]〉

∫
[dz]Tµν2n (z)Gµνµ′ν′(z, w)Tµ

′ν′

2n (w)

(4.15)

The expressions in brackets arise from the integrals over S5 and are defined in appendix A.
We will worry about contact interactions later. So far, we see that we need to compute
three Witten Diagrams for each channel, involving exchanges of scalars, massless and mas-
sive gauge bosons and massless and massive gravitons. In order to do so, we extend the
methods developed in [8, 14, 16] to perform the computations.

4.2 Results for exchange integrals

We now carry out the integrals and write the results in terms of D̄-functions, which are
functions of u and v and are related to the more familiar D-functions [8] which are defined as

D∆1∆2∆3,∆4(~x1, ~x2, ~x3, ~x4) =
∫

[dw]K̃∆1(w, ~x1)K̃∆2(w, ~x2)K̃∆3(w, ~x3)K̃∆4(w, ~x4) (4.16)

where K̃∆(w, ~x) is the unit normalised bulk-to-boundary propagator for a scalar of confor-
mal dimension ∆

K̃∆(z, ~x) =
(

z0

z2
0 + (~z − ~x)2

)∆

(4.17)

D∆1∆2∆3∆4 can be identified as a quartic scalar interactions (see figure 4). The relation
between the D-functions and the D̄-functions, and their properties can be found in ap-
pendix C. Let us first introduce the following notation for the various exchange integrals
that contribute to the amplitude.

S∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) =
∫

[dw][dz]K̃∆1(z, ~x1)K̃∆2(z, ~x2)G(z, w)K̃∆3(w, ~x3)K̃∆4(w, ~x4)

V∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) =
∫

[dw][dz]K̃∆1(z, ~x1)
↔
Dµ K̃∆2z, ~x2)Gµν(z, w)K̃∆3(w, ~x3)

↔
Dν K̃∆4(w, ~x4)

T∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) =
∫

[dz][dw]Tµν∆1∆2
(z, ~x1, ~x2)Gµνµ′ν′(z, w)Tµ

′ν′

∆3,∆4
(w, ~x3, ~x4) (4.18)
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with the bulk-to-bulk propagators appropriately chosen, depending on the particle that is
being exchanged. For our case, the s-channel integrals yield

S22nn(~x1, ~x2, ~x3, ~x4) =
π2

8
1

(n− 1)Γ(n)
u

|~x12|4|~x34|2n
D̄11nn

V22nn(~x1, ~x2, ~x3, ~x4) = − π2

4Γ(n)
u

|~x12|4|~x34|2n
{
−2D̄21nn+1 + D̄21n+1n + D̄12nn+1

}
T22nn(~x1, ~x2, ~x3, ~x4) = − π2

2Γ(n)
u

|~x12|4|~x34|2n

{
1
3
nD̄11nn − n(n− 1)uD̄22nn

− n(1 + v − u)D̄22n+1n+1

}
(4.19)

and the t-channel amplitudes are given by

S2n2n(~x1, ~x3, ~x2, ~x4) =
π2

8
1

(n− 1)Γ(n)
u2

|~x12|4|~x34|2n
D̄12n−1n

V2n2n(~x1, ~x3, ~x2, ~x4) = − π2

2nΓ(n)
u2

|~x12|4|~x34|2n
{
−D̄31nn + D̄12nn+1 − (n− 1)D̄22n−1n+1

+ (n− 1)uD̄23n−1n

}
T2n2n(~x1, ~x3, ~x2, ~x4) = − π2

Γ(n)

[
n

(n+ 1)(n+ 2)

]
u2

|~x12|4|~x34|2n
{

2D̄31n+1n+1

+n(n− 1)uD̄33n−1n+1 + 2n(1− v − u)D̄23nn+1

}
(4.20)

where u and v were introduced in (2.10). These expressions are to be substituted in the
action, including an overall factor of C(n)2C(2)2 where

C(n) =


Γ(n)

π2Γ(n−2)
, n > 2

1
π2 , n = 2

(4.21)

4.3 Contact diagrams

One starts from the quartic lagrangian

L4 = −1
4

(C1234 − S1234)s1
2∇µs2

2s
3
n∇µs4

n

+
1
8
n(−δ12

2 δ
34
n + (6 + n)C1234 + (3n− 4)S1234 − nΥ1234)s1

2s
1
2s

3
ns

4
n (4.22)

We record the useful identity

DµK∆1(z, ~x1)DµK∆2(z, ~x2) = ∆1∆2 (K∆1(z, ~x1)K∆2(z, ~x2)

− 2|~x12|2K∆1+1(z, ~x1)K∆2+1(z, ~x2)
)

(4.23)

Using this expression and the definition of the D-functions, we see that the contribution
to the amplitude from the quartic lagrangian is given by

L4 = −1
4

(C1234 − S1234)(2nD22nn − 4n|~x24|2D23nn+1)

+
1
8
n(−δ12

2 δ
34
n + (6 + n)C1234 + (3n− 4)S1234 − nΥ1234)D22nn (4.24)
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where again an overall factor of C(n)2C(2)2 was omitted, but should be included. We can
rewrite this expression in terms of the D̄-functions

L4 = π2 (C(2)C(n))2

Γ(n)
u2

|~x12|4|~x34|2n
[
−n

4
(C1234 − S1234)(D̄22nn − D̄23nn+1)

+
1
24
n(−δ12

2 δ
34
n + (6 + n)C1234 + (3n− 4)S1234 − nΥ1234)D̄22nn

]
(4.25)

The final result for the on-shell action is then given by substituting the expressions for the
exchange amplitudes on equations (4.14) and (4.15) and by equation (4.25).

4.4 Results for the four-point function

We collect the results for the relevant on-shell action. First we write down the part of the
lagrangian that contributes to the four-point function of interest

Lon−shell = −n(n− 1)〈C1
2C

2
2C

5
2 〉〈C3

nC
4
nC

5
2 〉
∫

[dz]s1
2(z)s2

2(z)G(z, w)s3
2(w)s4

2(w)

−n2(n− 1)2〈C1
2C

3
nC

5
n〉〈C2

2C
4
nC

5
n〉
∫

[dz]s1
2(z)s3

n(z)G(z, w)s2
2(w)s4

n(w)

− n

24
〈C1

2C
2
2C

5
[1,0,1]〉〈C

3
nC

4
nC

5
[1,0,1]〉

∫
[dz]s1

2(z)
↔
∇
µ

s2
2(z)Gµν(z, w)s3

n(w)
↔
∇
ν

s4
n(w)

−n(n− 1)
23

〈C1
2C

3
nC

5
[1,n−1,1]〉〈C

2
2C

4
nC

5
[1,n−1,1]〉

∫
[dz]s1

2(z)
↔
∇
µ

s3
n(z)Gµν(z, w)s2

2(w)
↔
∇
ν

s4
n(w)

− 1
24
〈C1

2C
2
2C

5
[0,0,0]〉〈C

3
3C

4
3C

5
[0,0,0]〉

∫
[dz]Tµν22 (z)Gµνµ′ν′(z, w)Tµ

′ν′

nn (w)

− 1
23
〈C1

2C
3
nC

5
[0,n−2,0]〉〈C

2
2C

4
nC

5
[0,n−2,0]〉

∫
[dz]Tµν2n (z)Gµνµ′ν′(z, w)Tµ

′ν′

2n (w)

− 1
22

(C1234 − S1234)s1
2(w)∇µs2

2(w)s3
n(w)∇µs4

n(w)

+
1
23
n
(
−δ12

2 δ34
n + (6 + n)C1234 + (3n− 4)S1234 − nΥ1234

)
s1

2(w)s1
2(w)s3

n(w)s4
n(w) (4.26)

We now substitute the summation of overlapping SO(6) tensors (see appendix A) and use
the results for the exchange integrals. After relabelling the indices, one finally gets the
on-shell value of the action that determines the four-point function

S =
N2

8π2

(n− 1)2(n− 2)2

4π6Γ(n)

∫
d4~x1d

4~x2d
4~x3d

4~x4s
1
2(~x1)s2

2(~x2)s3
n(~x3)s4

n(~x4)
u

|~x12|4|~x34|2n

{
+δ12

2 δ
34
n

n

25

[
D̄11nn − (n+ 1)uD̄22nn − (1 + v − u)D̄22n+1n+1

]
+C1234 n

24

[
−2D̄11nn − 2(n− 1)uD̄12n−1n + (n+ 6)uD̄22nn − 2D̄21nn+1 + 2D̄12nn+1

− (uD̄31nn − (n− 1)u2D̄23n−1n)− u((n− 1)D̄22n−1n+1 − D̄12nn+1)
]

+C1243 n

22

[
uD̄23nn+1 − uD̄22nn

]
+Υ1234 n

24(n+ 2)

[
2(n− 1)2(n+ 2)

(n+ 1)
uD̄12n−1n + (n− 2)(uD̄31nn − (n− 1)u2D̄23n−1n)

+(n− 2)u((n− 1)D̄22n−1n+1 − D̄12nn+1)− n(n+ 2)uD̄22nn

+
2

n+ 1
(n(n− 1)u2D̄33n−1n+1 + 2uD̄31n+1n+1 + 2n(1− u− v)uD̄23nn+1)

]
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+S1234 n

24

[
−2(n− 1)2uD̄12n−1n + 3nuD̄22nn − 4uD̄23nn+1

+ (uD̄31nn − (n− 1)u2D̄23n−1n) + ((n− 1)uD̄22n−1n+1 − uD̄12nn+1)
] }

(4.27)

Here we have made use of some identities relating D̄-functions (appendix C) to simplify
the expressions. Notice that here we are abusing of the notation, as the scalar fields now
refer to the boundary sources, and so depend on the ~xi coordinates. We are now ready to
compute the four-point function (2.2) using the AdS/CFT prescription given in (4.1). Of
course, we need first to canonically normalise the corresponding 1/2-BPS operators, taking
into account the rescaling we did to the action at the beginning of this computation

s̃In =
N

4π2
(n− 2)1/2(n− 1)sIn s̃I2 =

N

4
√

2π2
sI2 (4.28)

This implies that the connected piece of the four-point function is of order O(1/N2). The
explicit form can be determined from

〈O2(~x1)O2(~x2)On(~x3)On(~x4)〉= 29π8

N4

1
(n−2)(n−1)2

δ

δsI12 (~x1)
δ

δsI22 (~x2)
δ

δsI3n (~x3)
δ

δsI4n (~x4)
(−S)

(4.29)
Upon functional differentiation, the contribution to the amplitude from each of the tensor
structures will be given by the corresponding orbit, this is, the s, t and u channels obtained
by independent permutations of the points 1 ↔ 2, 3 ↔ 4. Here we make use of the
symmetries of the SO(6) tensors, so the final result reads as follows

〈OI12 (~x1)OI22 (~x2)OI3n (~x3)OI4n (~x4)〉 =
1

~x4
12~x

2n
34

{
A(u, v)δI1I22 δI3I4n +B1(u, v)CI1I2I3I4 (4.30)

+B2(u, v)CI1I2I4I3 + C1(u, v)ΥI1I2I3I4 + C2(u, v)ΥI1I2I4I3 +D(u, v)SI1I2I3I4
}

where the functions (A,B1, B2, C1, C2, D) are given by

(A,B1, B2, C1, C2, D) =
24(n− 2)

Γ(n)
1
N2

(Ã, B̃1, B̃2, C̃1, C̃2, D̃) (4.31)

and

Ã(u, v) = − n
23
u
{
D̄11nn − (n+ 1)uD̄22nn − (1 + v − u)D̄22n+1n+1

}
B̃1(u, v) = − n

23
u
{
−2D̄11nn− 2(n− 1)uD̄12n−1n− 2(D̄21nn+1− D̄21n+1n)+(n+ 6)uD̄22nn

−(uD̄31nn − (n− 1)u2D̄23n−1n)− ((n− 1)uD̄22n−1n+1 − uD̄12nn+1)

− 4u(D̄22nn − D̄32nn+1)
}

B̃2(u, v) = − n
23
u
{
−2D̄11nn− 2(n− 1)uD̄12nn−1− 2(D̄12nn+1− D̄21nn+1)+(n+ 6)uD̄22nn

−(uD̄13nn − (n− 1)u2D̄23nn−1)− ((n− 1)uD̄22n+1n−1 − uD̄12n+1n)

− 4u(D̄22nn − D̄23nn+1)
}
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C̃1(u, v) = − n

23(n+ 2)
u2

{
2(n− 1)2(n+ 2)

(n+ 1)
D̄12n−1n − n(n+ 2)D̄22nn

+
2n(n− 1)
n+ 1

uD̄33n−1n+1 +
4

n+ 1
D̄31n+1n+1 +

4n
n+ 1

(1− u− v)D̄23nn+1

+ (n− 2)((n− 1)D̄22n−1n+1 − D̄12nn+1)+ (n− 2)(D̄31nn − (n− 1)uD̄23n−1n)
}

C̃2(u, v) = − n

23(n+ 2)
u2

{
2(n− 1)2(n+ 2)

(n+ 1)
D̄12nn−1 − n(n+ 2)D̄22nn

+
2n(n− 1)
n+ 1

uD̄33n+1n−1 +
4

n+ 1
D̄13n+1n+1 +

4n
n+ 1

(v − u− 1)D̄23n+1n

+ (n− 2)((n− 1)D̄22n+1n−1 − D̄12n+1n)+ (n− 2)(D̄13nn − (n− 1)uD̄23nn−1

}
D̃(u, v) = − n

23
u2
{
−2(n− 1)2(D̄12n−1n + D̄12nn−1) + 6nD̄22nn − 4(D̄23nn+1 + D̄32nn+1)

+(n− 1)(D̄22n−1n+1 + D̄22n+1n−1)− (D̄12nn+1 + D̄12n+1n)

+ (D̄31nn + D̄13nn)− (n− 1)u(D̄23n−1n + D̄23nn−1)
}

From (4.32) it is possible to see that the crossing symmetries are respected and that the
overall form of the four-point amplitude is consistent with conformal symmetry.

5 Verifying the CFT predictions

We now try to verify the dynamical constraints imposed on the amplitude by the insertion
procedure, on the supergravity result. To do this, we need to rewrite the result (4.31)
in a simpler way. We will follow the notation in [18], which is based on ideas developed
in [26, 27] and introduce the conformal invariants

σ =
u1 · u3u2 · u4

u1 · u2u3 · u4
τ =

u1 · u4u2 · u3

u1 · u2u3 · u4
(5.1)

so the four-point function (2.2) is given by

〈O2(~x1, u1)O2(~x2, u2)On(~x3, u3)On(~x4, u4)〉 =
(
u1.u2

|~x12|2

)2(u3.u4

|~x34|2

)n
G(2,2,n,n)(u, v;σ, τ)

(5.2)
where

G(2,2,n,n)(u, v;σ, τ) = G0(u, v;σ, τ) + s(u, v;σ, τ)HI(u, v;σ, τ) (5.3)

HI contains all the non-trivial dynamic contributions and G0 is the free field part, which
has the following structure

G0(u, v;σ, τ) = k +Gf (u, v;σ, τ) + s(u, v;σ, τ)H0(u, v, σ, τ) (5.4)

In these expressions

s(u, v;σ, τ) = v + σ2uv + τ2u+ σv(v − 1− u) + τ(1− u− v) + στu(u− 1− v) (5.5)

The free field term in the 22→ nn channel is given by the expression [18, 26, 27]

G0(u, v;σ, τ) = 1 + b1

(
σu+ τ

u

v

)
+ c1

(
σ2u2 + τ2u

2

v2

)
+ dστ

u

v
(5.6)

– 16 –



J
H
E
P
0
3
(
2
0
0
9
)
1
3
3

with b1, c1 and d are given in (2.14). The 2n→ 2n channel can be obtained using crossing
symmetry. From (4.31), one can read the expression in the interacting theory

G(u, v;σ, τ) = a(u, v) +
(
σub1(u, v) + τ

u

v
b2(u, v)

)
+
(
σ2u2c1(u, v) + τ2u

2

v2
c2(u, v)

)
+ στ

u2

v
d(u, v) (5.7)

where a(u, v) = A(u, v), b1(u, v) = B1(u,v)
u , c1(u, v) = C1(u,v)

u2 and d(u, v) = v
u2D(u, v).

b2(u, v) and c2(u, v) can be obtained from crossing symmetry, as the supergravity re-
sult (2.14) satisfies this property. Notice also that the cross-ratios σ and τ defined in (5.1)
arise naturally from expressing the products of C-tensors in terms of harmonic polynomials
(see appendix B).

It is possible to rewrite (5.7) by simplifying the result (2.14), using identities between
D̄-functions (see appendix C). The simplification was done in [18] and we reproduce it
here. One gets

G(u, v;σ, τ) = 1 +
2n
N2

(
σu+ τ

u

v
+ (n− 1)στ

u2

v
− 1

(n− 2)!
s(u, v;σ, τ)unD̄nn+222(u, v)

)
(5.8)

where the disconnected piece has been normalised to 1. In the free field limit, G → G0, so
comparing (5.6) with (5.7) one has

a(u, v)→ 1 bi(u, v)→ bi ci(u, v)→ ci d(u, v)→ d (5.9)

from where we can identify k = 1 + (n+ 1)bi + 2ci and from (5.3) one sees that6

HI(u, v) = − 2n
N2

1
(n− 2)!

unD̄nn+222(u, v) (5.10)

In the 2n→ 2n channel the previous expression reads

ĤI(u, v) = − 2n
N2

1
(n− 2)!

u2D̄2n+22n(u, v) (5.11)

It is now clear that one can write

a(u, v) =1 + vHI(u, v) d(u, v) =d+
v

u
(u− v − 1)HI(u, v)

b1(u, v) =b1 +
v

u
(v − u− 1)HI(u, v) b2(u, v) =b2 +

v

u
(1− u− v)HI(u, v)

c1(u, v) =c1 +
v

u
HI(u, v) c2(u, v) =c2 +

v2

u
HI(u, v) (5.12)

so the supergravity result also splits into a free and a quantum part, as it was predicted
by superconformal symmetry. Defining

HI(u, v) =
u

v
F(u, v) (5.13)

it becomes clear that the relations (3.7) are satisfied. We consider this fact as a strong
evidence in favour of the AdS/CFT correspondence.

6This can be read of from a(u, v) as its connected piece has no free field contributions.
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We can also read off the values of the coefficients bi, ci and d from the free part of the
function G(u, v;σ, τ). The results are

bi =
2n
N2

ci = 0 d =
2n(n− 1)

N2
(5.14)

Notice that the values of bi and d agree with those computed using free field theory. This is
a highly non-trivial result. However, ci vanish, which is apparently at odds with what was
obtained using free fields, but recall that ci was dependent on the colour structure of the
operators. This might suggest that this quantity receives quantum corrections. It should
also be noticed that in the case n = 3, one has ci = 0 so there is agreement [14].

It is also interesting to see that the interacting contribution to the amplitude
(eq. (5.10)) can be compared with the results in [28, 29] where four point functions of
specific chiral primary operators were evaluated in the Eikonal approximation.7 In partic-
ular, it is possible to see that those results are in agreement with the behaviour shown by
F(u, v) in the limit in which u→ 0 in the Lorentzian sheet.8

6 Conclusions and outlook

In this paper, we have investigated four-point functions of different weight operators in
the context of the AdS/CFT correspondence. We have looked at a specific computations
in the supergravity approximation (large λ, large N), of a process involving fields dual to
primaries of conformal dimension 2 and primaries of conformal dimension n. The results
have been analysed using results from free field Yang-Mills theory and superconformal
symmetry. Some of our key results are summarised below:

• The connected piece of the four-point function of 1/2-BPS superconformal primaries
of conformal weights 2 and n, was shown to have a structure that is consistent with
superconformal symmetry. Moreover, we have seen it naturally separates into a free
and an interacting (quantum) piece, which involves all the non-trivial dynamics and
satisfies the restrictions imposed by the insertion procedure.

• A new method was used for evaluating effective couplings in the lagrangian arising
from integrals over S5. This allowed the determination of the on-shell lagrangian for
KK scalars dual to superconformal primaries in the YM side.

• We provided further evidence for the possibility that the quartic four-derivative La-
grangian of [10] vanishes, as now we have extended the computation of the lagrangian
to include primaries with different conformal weights, with two of them being generic
(i.e. no specification of the representation content). As it has been argued before
in [12, 13], this would imply the existence of a σ-model action describing the ex-
tension of d = 5 N = 8 supergravity to include massive KK modes of the IIB
compactification.

7This limit is generically dominated by the exchange of the graviton Regge trajectory in string theory,

dual to the pomeron trajectory in SYM as shown in [28, 30, 31]. We thank Miguel Costa and Lorenzo

Cornalba for bringing these results to our attention.
8One needs to set n = L in their paper, to obtain the general n case.
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With the techniques developed in appendix B to compute the interaction couplings arising
from the products of C-tensors, it seems likely that the computation of the correlation func-
tion

〈On1(~x1)On1(~x2)On2(~x3)On2(~x4)〉

in AdS supergravity could be evaluated. This would give us further information on the
dynamics of KK scalars, and would provide additional evidence for the vanishing of the
quartic four-derivative lagrangian in the five-dimensional effective theory.

Another problem one could explore is the effect of R4 corrections to four-point func-
tions of superconformal primary operators. Recalling that the dual fields are built from the
trace of the graviton in the S5 and the RR four-form on S5 and given that all the terms
at order α′3 involving the metric and the four-form are known from [32], it is conceivable
that the corrections to the five-dimensional effective lagrangian can be obtained. This
indeed would be a difficult task, but a first step would be to consider the case of lowest
scale dimension primaries(∆ = 2). In this way, it should be possible to compute the order
(g2

YMN)−3/2 correction to the four-point function of lowest weight primaries.
A puzzle that remains to be addressed is the mismatch of the ci coefficient function

from the supergravity computation, eq. (5.14), and the free-field theory one, eq. (2.14).
Given that the supergravity result gives ci = 0, one might imagine that there should
be stringy corrections to this quantity. Corrections in α′ could be considered once the
higher order corrections to the five-dimensional effective action are known. It could also
be helpful to do a careful analysis in the gauge theory side, that might reveal if mixing of
single and double trace operators is responsible for the vanishing of ci in the supergravity
theory, as it is well established that the fields sk are dual to linear combinations of single
and double trace operators [24].9 Another interesting avenue would be to consider the
potential contribution coming from non-perturbative effects [33].

Finally it should be mentioned that the supergravity result obtained here can be used
to analyse the structure of the OPE of the primaries at strong coupling and to evaluate
anomalous dimensions. Some results in this matter can be found in [18].

A Integrals over the sphere

Upon reduction of the ten-dimensional action, the supergravity fields couple through SO(6)
invariant tensors which are given by integrals of spherical harmonics on the five-sphere

a123 =
∫
Y I1Y I2Y I3 t123 =

∫
∇αY I1Y I2Y I3

α p123 =
∫
∇αY I1∇βY I2Y I3

(αβ) (A.1)

All irreducible representations of SO(6) that are required, can always be expressed in terms
of canonically normalized C-tensors with corresponding Young symmetry. The integrals of

9Effects of operator mixing are supposed to be suppressed in the large N limit for four-point amplitudes

that are not of extremal or near-extremal type [24]. Hence it should be safe, in the case here considered,

to identify the primary operator OI with the Kaluza-Klein excitation sk.
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spherical harmonics can then be expressed in terms of C-tensors as follows

a123 =

∏3
i=1

ki!z(ki)
αi!

π3/2(σ + 2)!2σ−1
〈C1

[0,k1,0]C
2
[0,k2,0]C

3
[0,k3,0]〉

t123 =

∏3
i=1

ki!z(ki)

(αi− 1
2

)!

π3/2(k3 + 1)(σ + 3
2)!2σ−

3
2

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[1,k3−1,1]〉

p123 =
α3
∏3
i=1

ki!z(ki)
αi!

π3/2(σ + 1)!2σ
〈C1

[0,k1,0]C
2
[0,k2,0]C

3
[2,k3−2,2]〉 (A.2)

where z(k) = (2k−1(k + 1)(k + 2))1/2, σ = 1
2(k1 + k2 + k3) and αi = 1

2(kj + kl − ki). Here
the notation we follow stands for

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[0,k3,0]〉 = CI1i1...iα2j1...jα3

CI2j1...jα3 l1...lα1
CI3l1...lα1 i1...iα2

(A.3)

and

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[1,k3−1,1]〉 = CI1mi1...ip2j1...jp3

CI2j1...jp3 l1...lp1
CI3m;l1...lp1 i1...ip2

−CI1i1...ip2+1j1...jp3
CI2j1...jp3 l1...lp1−1

CI3m;l1...lp1−1i1...ip2+1
(A.4)

where p1 = α1 + 1
2 , p2 = α2 − 1

2 and p3 = α3 − 1
2 . Finally,

〈C1
[0,k1,0]C

2
[0,k2,0]C

3
[2,k3−2,2]〉 = CI1mi1...ip2j1...jp3

CI2nj1...jp3 l1...lp1
CI3mn;l1...lp1 i1...ip2

(A.5)

From the AdS exchange diagrams and the quartic couplings, we see that one needs to ex-
press products of the form 〈C1C2C5〉〈C3C4C5〉, where summation over the representation
of the fifth index is assumed, in terms of a basis of independent tensor structures. The
product can be expressed in terms of combinations of Kronecker deltas [12]. One has

CIi1...inC
I
j1...jn =

[ n
2 ]∑

k=0

θk
∑

(l2k−1...l2k)

δil1 il2 . . . δil1 il2 . . . δil2k−1 il2k
δ

(n−2k)

i1...̂il1 ...̂il2k
...iln ,(j2k+1...jn

δj1j2 . . . δj2k−1j2k)

(A.6)
where (. . .) stands for total symmetrisation of indices and δ

(p)
i1...ip,j1...jp

= δ
(p)
(i1...ip),(j1...jp)

denotes the symmetrised product of p kronecker deltas δirjs . The coefficients θk are given by

θ0 = 1 θk =
(−1)k

2k(n+ 1) . . . (n+ 2− k)
(A.7)

Evidently (A.6) it is useful when one is dealing with correlation functions involving chiral
primaries of lower weight. However, its application becomes increasingly involved once
one has higher rank tensors. One needs then to develop some other method to determine
the sums of products of SO(6) tensors, that enter the amplitude.

B Harmonic polynomials

We reproduce here some results derived in [27, 34].10 One needs to consider the expansion
of four point functions in terms of the eigenfunctions of the SO(6) Casimir operator

L2 =
1
2
LabLab (B.1)

10We thank H. Osborn for bringing these results to our attention and suggesting the use of harmonic

polynomials to obtain the couplings.
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where the generators are given by

Lab = u1a∂1b − u1b∂1a + u2a∂2b − u2b∂2a (B.2)

which is expressed in terms of null vectors u1, u2, u3, u4. One can prove that

Labu1 · u2 = 0 (B.3)

so that
L2(u1 · t2)k(u3 · u4)lf(σ, τ) = (u1 · u2)k(u3 · u4)lL2f(σ, τ) (B.4)

where σ and τ are given by

σ =
u1 · u3u2 · u4

u1 · u2u3 · u4
τ =

u1 · u4u2 · u3

u1 · u2u3 · u4
(B.5)

so that one can consider eigenfunctions which are polynomials in σ, τ .

Y (σ, τ) =
∑
t≥0

t∑
q=0

ct,qσ
t−qτ q (B.6)

which satisfies the eigenvalue equation

L2Y (σ, τ) = −2CY (σ, τ) (B.7)

If tmax = n, it is possible to solve for the coefficients in the expansion (B.6) and for a
given n, there will be m = n+ 1 eigenfunctions orthogonal with respect to integration over
σ, τ ≥ 0,

√
σ +
√
τ ≤ 1.

Up to a normalisation constant, each term may be identified with terms in the pro-
jection operators on irreducible representations of SO(6), where Ynm corresponds to the
SU(4)' SO(6) representation with Dynkin labels [n−m, 2m,n−m].

More general forms can be considered when discussing four-point functions in which
each field belongs to the same SO(6) representation. For the more general case, one can
generalize (B.7) to

L2((u1 · u4)a(u2 · u4)bY (a,b)(σ, τ)) = −2C(((u1 · u4)a(u2 · u4)bY (a,b)(σ, τ)) (B.8)

In this case, Y (a,b)
nm will correspond to the representation [n−m, a+b+2m,n−m]. Proceeding

accordingly, one can built the lowest eigenfunctions by hand. The ones that are needed are
listed below

Y
(a,0)

00 = 1

Y
(a,0)

10 =
(
σ − τ +

a

a+ 4

)
Y

(a,0)
11 =

(
σ +

τ

a+ 1
− 1
a+ 3

)
Y

(a,0)
20 =

(
σ2 + τ2 − 2στ +

a− 3
a+ 6

σ − 2a+ 3
a+ 6

τ +
a2 + 2a+ 3

(a+ 5)(a+ 6)

)
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Y
(a,0)

21 =
(
σ2 − τ2

a+ 1
− a

a+ 1
στ +

a− 3
a+ 6

σ

+
2a+ 3

(a+ 1)(a+ 6)
τ − a

(a+ 4)(a+ 6)

)
Y

(a,0)
22 =

(
σ2 +

2
(a+ 1)(a+ 2)

τ2 +
4

a+ 1
στ − 4

a+ 5
σ

− 4
(a+ 1)(a+ 5)

τ +
2

(a+ 4)(a+ 5)

)
(B.9)

The polynomials Y (0,0)
00 , Y (0,0)

11 and Y
(0,0)

22 give the products of scalar harmonics a125a235

for fixed k5 = 0, 2, 4, in the s-channel. The same polynomials but with a = n− 2 give the
results for the t-channel, with k5 = n − 2, n − n + 2. The polynomials Y (0,0)

10 and Y
(0,0)

20

give the products of vector harmonics t125t345 for k5 = 1, 3 in the s-channel, while in the
t-channel, k5 = n − 1, n + 1, with a = n − 2. Finally, the polynomial Y (0,0)

21 gives the
product of tensor harmonics p125p345 for k5 = 2 in the s-channel and for k5 = n, again with
a = n− 2. The results are correct up to an appropriate normalisation constant. By using
the completion relation (A.6) involving SO(6) tensors, it is possible to fix it so that one
can reproduce the results involving p = 2, 3. We first introduce the relation between the
monomials in σ and τ , with the different tensor structures entering the amplitude, which
we list below

δ12
2 δ

34
n = C1

ijC
2
ijC

3
k1···knC

4
k1···kn

C1234 = C1
ijC

2
jkC

3
kl1···ln−1

C4
il1···ln−1

Υ1234 = C1
ijC

2
lmC

3
ijk1···kn−2

C4
lmk1···kn−2

S1234 = C1
ikC

2
jlC

3
lkm1···mn−2

C4
ijm1···mn−2

(B.10)

One then obtains the following formulae. For the s-channel

σ2 ≡Υ1234 τ2 ≡Υ1243

σ ≡C1234 τ ≡C1243

στ ≡S1234 1 ≡δ12
2 δ

34
n

and for the t-channel

σ̃2 ≡Υ1342 τ̃2 ≡δ13
2 δ

24
n

σ̃ ≡S1324 τ̃ ≡C1342

σ̃τ̃ ≡C1324 1̃ ≡Υ1324

where S1234 is symmetric under exchange of 1↔ 2 and 3↔ 4, while C1234 and Υ1234 obey
the relations

C1234 = C2143 Υ1234 = Υ2143 (B.11)

The tilded variables are related to the original ones by

σ̃ =
1
σ

τ̃ =
τ

σ
(B.12)
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We now list the expressions that are required by the computation. For the s-channel,
we set k1 = k2 = 2, k3 = k4 = n. The contributions from scalar harmonics yield

〈C1
2C

2
2C

5
[0,0,0]〉〈C

3
nC

4
nC

5
[0,0,0]〉 = δ12

2 δ
34
n ,

〈C1
2C

2
2C

5
[0,2,0]〉〈C

3
nC

4
nC

5
[0,2,0]〉 =

1
2
C1234 +

1
2
C1243 − 1

6
δ12

2 δ
34
n ,

〈C1
2C

2
2C

5
[0,4,0]〉〈C

3
nC

4
nC

5
[0,4,0]〉 = − 2

15
C1234 − 2

15
C1243 +

2
3
S1234

+
1
6

Υ1243 +
1
6

Υ1234 +
1
60
δ12

2 δ
34
n . (B.13)

It is clear that these expressions are identical to those entering previous computations, and
in view of the formalism involving harmonic polynomials, it is easy to convince oneself that
it has to be true. For the summation over the vector representations one gets

〈C1
2C

2
2C

5
[1,0,1]〉〈C

3
nC

4
nC

5
[1,0,1]〉 = 2(C1243 − C1234),

〈C1
2C

2
2C

5
[1,2,1]〉〈C

3
nC

4
nC

5
[1,2,1]〉 =

1
3

(C1234 − C1243) +
2
3

(Υ1234 −Υ1243).
(B.14)

And for the tensor representation,

〈C1
2C

2
2C

5
[2,0,2]〉〈C

3
nC

4
nC

5
[2,0,2]〉 = −2

3
(
C1234 + C1243

)
+

4
3
(
Υ1234 + Υ1243

)
−8

3
S1234 +

2
15
δ12

2 δ
34
n . (B.15)

Next we consider the t-channel case in which we set k1 = k3 = 2 and k2 = k4 = n. A
priori it is possible to see that the normalisation constants will depend on n, and we need
to determine these first. We do so, by computing various cases in which n takes fixed
values.11 For summation over scalar harmonics, one gets

〈C1
2C

2
nC

5
[0,n−2,0]〉〈C

3
2C

4
nC

5
[0,n−2,0]〉 = Υ1324, (B.16)

〈C1
2C

2
nC

5
[0,n,0]〉〈C

3
2C

4
nC

5
[0,n,0]〉 =

n− 1
n

[
S1324 +

1
n− 1

C1342 − 1
n+ 1

Υ1324

]
,

〈C1
2C

2
nC

5
[0,n+2,0]〉〈C

3
2C

4
nC

5
[0,n+2,0]〉 =

n(n− 1)
(n+ 1)(n+ 2)

[
Υ1342 +

2
n(n− 1)

δ13
2 δ24

n +
4

n− 1
C1324

− 4
n+ 3

S1324 − 4
(n− 1)(n+ 3)

C1342 +
2

(n+ 2)(n+ 3)
Υ1324

]
,

One the scalar contributions are determined, it is easy to compute the vector and tensor
ones by using the following identities12

t125t345 = −(f1 − f2)(f3 − f4)
4f5

a125a345 +
1
4

(a145a235 − a245a135)

p125p345 = −(f1 − f2)(f3 − f4)
2(f5 − 5)

t125t345 −
5

4f5(f5 − 5)
d125d345

− 1
20

(f1+f2− f5)(f3+f4− f5)a125a345+
1
8

(f1 + f3 − f5)(f2 + f4 − f5)a135a245

+
1
8

(f1 + f4 − f5)(f2 + f3 − f5)a145a235 (B.17)

11For this task, we used Cadabra, which is very well suited for doing tensor computations in particular

bases [35].
12We thank L. Berdichevsky for the alternative expression for d125.
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where fk = k(k + 4) and

d125 =
(

1
10
f2f5 +

1
10
f1f5 +

1
2
f1f2 −

1
4
f2

1 −
1
4
f2

2 +
3
20
f2

5

)
a125 (B.18)

Hence the vector contributions read

〈C1
2C

2
nC

5
[1,n−2,1]〉〈C

3
2C

4
nC

5
[1,n−2,1]〉 = − n

n− 1

[
S1324 − C1342 +

n− 2
n+ 2

Υ1324

]
, (B.19)

〈C1
2C

2
nC

5
[1,n,1]〉〈C

3
2C

4
nC

5
[1,n,1]〉 = − (n− 1)(n+ 2)

n(n+ 1)

[
Υ1342 − 1

n− 1
δ13
2 δ24

n −
n− 2
n− 1

C1324

+
n− 5
n+ 4

S1324 +
2(n− 2) + 3

(n− 1)(n+ 4)
C1342 − n− 2

(n+ 2)(n+ 4)
Υ1324

]
.

and finally, the tensor case gives

〈C1
2C

2
nC

5
[2,n−2,2]〉〈C

3
2C

4
nC

5
[2,n−2,2]〉 =

16(n− 1)
n2(n+ 1)

[
Υ1342 + δ13

2 δ
24
n − 2C1324 +

n− 5
n+ 4

S1324

−2(n− 2) + 3
n+ 4

C1342 +
(n− 2)2+2(n− 2)+3

(n+ 3)(n+ 4)
Υ1324

]
.

(B.20)

The results of the remaining cases are the same, if one changes the representation labels
accordingly, except for equation (B.20), which acquires an additional minus sign in the
cases k1 = k4 = n, k2 = k3 = 2 and k1 = k4 = 2, k2 = k3 = n.

C Properties of D-functions

We collect here the general properties and identities involving the D-functions. These are
defined as integrals over AdS5, by the formula

D∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) =
∫
d5z

z5
0

K̃∆1(z, ~x1)K̃∆2(z, ~x2)K̃∆3(z, ~x3)K̃∆4(z, ~x4) (C.1)

with

K̃∆(z, ~x) =
(

z0

z2
0 + (~z − ~x)2

)∆

(C.2)

D-integrals have also a representation in terms of integrals over Feynman parameters

D∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) =
π2Γ(Σ− 2)Γ(Σ)

2
∏
i Γ(∆i)

∫ ∏
j

dαjα
∆j−1
j

δ(
∑

j αj − 1)

(
∑

k<l αkαlx
2
kl)

Σ
(C.3)

where 2Σ =
∑

i ∆i. Immediately one can see that any D-function can be obtained by
differentiation of the box-integral:

B(xij) =
∫ ∏

j

dαj
δ(
∑

j αj − 1)

(
∑

k<l αkαlx
2
kl)

Σ
(C.4)
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We define now the D̄-functions, which are functions of conformal invariant ratios, u
and v, by

D̄∆1∆2∆3∆4(u, v) = κ
|~x31|2Σ−2∆4 |~x24|2∆2

|~x41|2Σ−2∆1−2∆4 |~x34|2Σ−2∆3−2∆4
D∆1∆2∆3∆4 (C.5)

where
κ =

2
π2

Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)
Γ(Σ− 2)

(C.6)

One can obtain identities relating different D̄-functions by using the differentiation. These
are

D̄∆1+1∆2+1∆3∆4 = −∂uD̄∆1∆2∆3∆4

D̄∆1∆2+1∆3+1∆4 = −∂vD̄∆1∆2∆3∆4

D̄∆1∆2∆3+1∆4+1 = (∆3 + ∆4 − Σ− u∂u)D̄∆1∆2∆3∆4

D̄∆1+1∆2∆3∆4+1 = (∆1 + ∆4 − Σ− v∂v)D̄∆1∆2∆3∆4

D̄∆1∆2+1∆3∆4+1 = (∆2 + u∂u + v∂v)D̄∆1∆2∆3∆4

D̄∆1+1∆2∆3+1∆4 = (Σ−∆4 + u∂u + v∂v)D̄∆1∆2∆3∆4 (C.7)

There are additional identities which relate D̄-functions with different values of Σ, and
can be derived by repeated use of (C.7). These are

(∆2 + ∆4 − Σ)D̄∆1∆2∆3∆4 = D̄∆1∆2+1∆3∆4+1 − D̄∆1+1∆2∆3+1∆4

(∆1 + ∆4 − Σ)D̄∆1∆2∆3∆4 = D̄∆1+1∆2∆3∆4+1 − vD̄∆1∆2+1∆3+1∆4

(∆3 + ∆4 − Σ)D̄∆1∆2∆3∆4 = D̄∆1∆2∆3+1∆4+1 − uD̄∆1+1∆2+1∆3∆4 (C.8)

Furthermore, there are identities relating D̄-functions with the same Σ. The most
frequently used is

∆4D̄∆1∆2∆3∆4 = D̄∆1∆2∆3+1∆4+1 + D̄∆1∆2+1∆3∆4+1 + D̄∆1+1∆2∆3∆4+1 (C.9)

Finally, we comment on the various symmetries that these functions exhibit. By means of
conformal symmetry, one can see that

D̄∆1∆2∆3∆4(u, v) = v−∆2D̄∆1∆2∆4∆3(u/v, 1/v)

D̄∆1∆2∆3∆4(u, v) = v∆4−ΣD̄∆2∆1∆3∆4(u/v, 1/v)

D̄∆1∆2∆3∆4(u, v) = v∆1+∆4−ΣD̄∆2∆1∆4∆3(u, v)

D̄∆1∆2∆3∆4(u, v) = u∆3+∆4−ΣD̄∆4∆3∆2∆1(u, v)

D̄∆1∆2∆3∆4(u, v) = D̄∆3∆2∆1∆4(v, u)

D̄∆1∆2∆3∆4(u, v) = D̄Σ−∆3Σ−∆4Σ−∆1Σ−∆2(u, v) (C.10)

D Exchange diagrams

We review here the various methods for computing exchange diagrams that are relevant
to the calculation of the four-point supergravity amplitude. The various details we have
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omitted here can be found in [12, 14, 16]. The basic idea is to use the underlying symmetries
of AdS space to write down an ansatz for the z-integral, and then use the Green function
equation to determine the explicit functional dependence. As usual, we work in Euclidean
AdSd+1 space with Poincaré coordinates

ds2 =
1
z2

0

(dz2
0 + dzidzi) (D.1)

Covariant derivatives involve the Levi-Civita connection, so the explicit form of the
Christoffel symbols is also required

Γρµν =
1
z0

(δρ0δµν − δ
ρ
νδµ0 − δρµδν0) (D.2)

D.1 Scalar exchanges

The scalar exchange integrals have been computed in [16]. For our case, we only need
to consider exchanges of chiral primaries of weights 2 and n, for the s and t channels,
respectively. The generic exchange integral has the form

A(w, ~x1, ~x2) =
∫

[dz]G∆(z, w)K̃∆1(z, ~x1)K̃∆2(z, ~x2) (D.3)

where ∆ is the conformal weight of the exchanged scalar and K̃∆(z, x) is the unit normalized
bulk-to-boundary scalar propagator introduced in (C.2). The exchange integral transforms
under inversion zµ = z′µ/(z

′)2 as

A(w, ~x1, ~x2) = |~x12|−2∆2I(w′ − ~x′12) (D.4)

where I(w) is a function given by

I(w) =
∫

[dz]G∆(z, w)z∆1
0

(z0

z2

)∆2

(D.5)

which is invariant under scale transformations and under the Poincaré subgroup of SO(5, 1).
This implies that one can make the ansatz

I(w) = (w0)∆12f(t) (D.6)

where ∆12 = ∆1−∆2 and t = w2
0/w

2. To determine the function f(t), one uses the equation
of motion for the Green function G∆(z, w), which leads to a second order differential
equation which can be explicitly solved. For the cases here considered, it suffices to quote
the results. In the s-channel, ∆1 = ∆2 = ∆ = 2 and m2

2 = −4. Hence (D.3) becomes

A(w, ~x1, ~x2) =
1
4
|~x12|−2K̃1(w, ~x1)K̃1(w, ~x2) (D.7)

In the t-channel, ∆1 = 2, ∆3 = ∆ = n and m2
n = n(n− 4). The z-integral (D.3) gives

A(w, ~x1, ~x3) =
1

4(n− 1)
|~x13|−2K̃1(w, ~x1)K̃n−1(w, ~x3) (D.8)
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D.2 Vector exchanges

The z-integrals for massless and massive vector exchanges have been computed before [16].
We will just use the results and adapt them to our case. One is interested in diagrams of
the form

Aµ(w, ~x1, ~x2) =
∫

[dz]Gµν′(z, w)gν
′ρ′(z)K̃∆1(z, ~x1)

↔
∂

∂zρ′
K̃∆2(z, ~x2) (D.9)

with K̃∆(z, ~x) as before. The propagator transforms as a bitensor under inversion, so when
going to the inverted frame the expression above becomes

Aµ(w, ~x1, ~x2) = |~x12|−2∆2
Jµν(w)
w2

Iν(w′ − ~x′12) (D.10)

where Jµν(w) = δµν − 2wµwν/w2 is the conformal jacobian and

Iµ(w) =
∫

[dz]Gµν
′
(z, w)z∆1

0

↔
∂

∂zν′

(z0

z2

)∆2

(D.11)

Using scale and Poincaré symmetries, one can write an ansatz for this integral

Iµ(w) = w∆12
0

wµ
w2

f(t) + w∆12
0

δµ0

w0
h(t) (D.12)

In order to determine the functions f(t) and h(t), one uses the corresponding Green function
equation. This gives a second order differential equations that can be solved in any case
which involves fields from type IIB supergravity compactified in AdS5 × S5. We refer the
reader to the formulas in [16] that determine the solutions to this system. Note that in the
case in which ∆1 = ∆2, the solution is even simpler given that h(t) = 0. We now write
down the explicit results that interest us. For the s-channel, ∆1 = ∆2 = 2 and m2 = 0 so
that f(t) = 1

2 t and (D.10) becomes

Aµ(w, ~x1, ~x2) =
|~x12|−4

2
Jµν(w)
w2

{
(w′ − ~x′12)ν
(w′ − ~x′12)2

w′0
(w′ − ~x′12)2

}
=

1
2

1
|~x12|2

{
(w− ~x2)µ

w0
K̃2(w, ~x2)K̃1(w, ~x1)− (w− ~x1)µ

w0
K̃2(w, ~x1)K̃1(w, ~x2)

}
(D.13)

For the t-channel, ∆1 = 2, ∆3 = n and m2 = n(n− 2), so that f(t) = a1t and h(t) = b1t.
One then gets

Aµ(w, ~x1, ~x3) = |~x31|−4Jµν(w)
w2

{
a1

(w′ − ~x′31)ν
(w′ − ~x′31)2

+ b1
δν0

w′0

}
w′0

(w′ − ~x′31)2
w′0

n−2

=
1
|~x13|2

{
a1+2b1
2(n−1)

DµK̃n−1(w, ~x3)K̃1(w, ~x1)− a1

2
DµK̃1(w, ~x1)K̃n−1(w, ~x3)

}
(D.14)

and in this case, a1 = −1/n and b1 = 0.
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D.3 Symmetric tensor exchanges

We now turn to the tensor exchanges. Again, all the ingredients to carry out this com-
putation can be found in the literature [14, 16], so here we just introduce the necessary
ones. The idea is very similar to the one in the previous cases. One needs to compute the
z-integral

Aµν(w, ~x1, ~x2) =
∫

[dz]Gµνµ′ν′(z, w)Tµ
′ν′(z, ~x1, ~x2) (D.15)

with the tensor Tµν(z, ~x1, ~x2) being of the form

Tµν(w, ~x1, ~x2) = ∇(µK̃∆1(z, ~x1)∇ν)K̃∆2(z, ~x2)− 1
2
gµν

(
∇ρK̃∆1(z, ~x1)∇ρK̃∆2(z, ~x2))

+
1
2

(m2
∆1

+m2
∆2
− k(k + 4))K̃∆1(z, ~x1)K̃∆2(z, ~x2)

)
(D.16)

where m2
∆ = ∆(∆− 4) and k is the weight of the exchanged tensor, which for our case can

be either 0 (massless graviton) or n − 2 (massive graviton). To solve the z-integral, one
again inverts the expression above

Aµν(w, ~x1, ~x2) = |~x12|−2∆3
Jµλ(w)
w2

Jνρ(w)
w2

Iλρ(w′ − ~x′12) (D.17)

and writes down an ansatz for this integral, guided by the existing symmetries. The most
general ansatz has the form

Iµν(w) = w∆12
0 gµνh(t) + w∆12

0 PµPνφ(t) + w∆12
0 ∇µ∇νX(t) + 2w∆12

0 ∇(µ(Pν)Y (t)) (D.18)

where Pµ = δµ0/w0 and h(t), φ(t), X(t), Y (t) are undetermined functions. Here we should
point out that in the case in which ∆1 = ∆2, the last two terms are pure diffeomorphisms
and depend on the gauge choice of the propagator, so they are left undetermined and do
not have any physical effect, given that they drop out of the final w-integral.

In the s-channel amplitude, the process involves the exchange of a massless graviton,
and the z-integral involves a vertex with two chiral primaries of weight 2. This integral
has been worked in [16], so it suffices to present the final result. Here ∆1 = ∆2 = 2,
m2

∆1
= m2

∆2
= −4 and k = 0. Hence

Iµν(w) =
t

3
{gµν − 3PµPν} (D.19)

For the t-channel, ∆1 = 2, ∆3 = n, m2
∆1

= −4, m2
∆3

= n(n − 4) and k = n − 2. Using
manipulations such as the ones presented in [12] and [14], one can simplify the result to
the expression

Iµν(w) = −w0
n−2 8nt

(n+ 1)(n+ 2)
wµwν
w4

(D.20)
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and one can rewrite both expressions in terms of the original coordinates. Note that

w0
′ → K̃1(w, ~x)

t = K̃1(w, ~x′ij) → |~x′ij |2K̃1(w, ~xi)K̃1(w, ~xj)

Jµλ(w)
w2

(w′ − ~x′ij)λ
(w′ − ~x′ij)2

→ Qµ =
(w − ~x′i)µ
(w − ~x′i)2

−
(w − ~x′j)µ
(w − ~x′j)2

Jµλ(w)
w2

P ′µ → Rµ = Pµ − 2
(w − ~x′)µ
(w − ~x′)2

(D.21)

so the z-integrals in the original coordinates read

Aµν(w, ~x1, ~x2) =
1
3

1
|~x12|2

{
gµν − 3

(
Pµ − 2

(w − ~x1)µ
(w − ~x1)2

)(
Pν − 2

(w − ~x2)ν
(w − ~x2)2

)}
K̃1(w, ~x1)K̃1(w, ~x2)

(D.22)
for the s-channel amplitude and

Aµν(w, ~x1, ~x3) = − 8n
(n+ 1)(n+ 2)

1
|~x13|2

QµQνK̃n−1(w, ~x3)K̃1(w, ~x1) (D.23)

for the t-channel amplitude.

E Reduction of quartic couplings

The calculation follows in the same lines as in [14] for the case in which n = 3.13 One
starts from the quartic lagrangian [10]

L4 = L(0)I1I2I3I4
k1k2k3k4

sI1k1s
I2
k2
sI3k3s

I4
k4

+ L(2)I1I2I3I4
k1k2k3k4

sI1k1∇µs
I2
k2
sI3k3∇

µsI4k4

+L(4)I1I2I3I4
k1k2k3k4

sI1k1∇µs
I2
k2
∇ν∇ν(sI3k3∇

µsI4k4) (E.1)

We use the formulas in appendix B to expand the products of SO(6) tensors. We first
consider the four-derivative couplings. There are six terms, one for each permutation of
the ki’s. One can find that there are two tensor structures that enter the expressions.
These are given by

A1234 = A1

(
C1234 − C1243

)
+A2

(
Υ1234 −Υ1243

)
A1 =

(−2 + n) (6 + n)
(
−16 + 16n+ n2

)
4096 (−6− 5n+ 5n2 + 5n3 + n4)

A2 =
(n+ 2)

65536n (−1+n2)

[
4 (−1+n) (1+n) (4+n)

(
528+368n+140n2+24n3+3n4

)
n!4

(−1 + n)!2 (3 + n)!2

+
n (4 + n)2 (6 + n)

(
−1 + n2

) (
144 + 96n+ 44n2 + 8n3 + 3n4

)
(2 + n)!2

(2 + n)2 (4 + n)!2

+
2
√

6 (−2 + n)
√

(−1 + n) n (1 + n)
(
720 + 640n+ 236n2 + 40n3 + 3n4

)
n!2(

3−n
2

)
!
(−1+n

2

)
!
(

1+n
2

)
! (2 + n)!

(
7+n

2

)
!

− 9600 (1 + n) n!2

(2 + n) (−2 + n)! (3 + n)!

]
(E.2)

13We thank G. Arutyunov for providing the expressions of the couplings as the paper [10] has some typos.
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and

Σ1234 =
7 (−2+n)2 (6+n)2 [2 δ12

2 δ34
n +n

(
4C1234+4C1243+(−1+n)

(
4S1234+Υ1234+Υ1243

))]
32768 (−1 + n) n (1 + n) (2 + n) (3 + n) (4 + n)

(E.3)
Here A1234 is antisymmetric under 3 ↔ 4 and Σ1234 is symmetric. One can reduce the

four-derivative term by using the following formula

s1
k1∇µs

2
k2∇ · ∇(s3

k3∇
µs4
k4) = (m2

k3 +m2
k4− 4)s1

k1∇µs
2
k2s

3
k3∇

µs4
k4 + 2s1

k1∇µs
2
k2∇νs

3
k3∇

ν∇µs4
k4

(E.4)
Using this identity on each of the six terms, and using the symmetries of the tensors A1234

and Σ1234 one can show the four-derivative terms vanish, with the remaining contribution
being

L(4)
4 = Σ1234(m2

2 +m2
n − 4)

(
−2s1

2∇µs2
2s

3
n∇µs4

n + s1
2∇µs3

ns
2
2∇µs4

n + s3
n∇µs1

2s
4
n∇µs2

2

)
(E.5)

One can still simplify this expression further by employing integration by parts. For a
general tensor Ω1234, one has

Ω1234s1
2∇µs3

ns
2
2∇µs4

n = −(Ω1243 + Ω1234)s1
2∇µs2

2s
3
n∇µs4

n −m2
ns

1
2s

2
2s

3
ns

4
n (E.6)

so using this in eq. (E.5) and relabeling appropriately, the final form of the contribution
from the four-derivative terms is

L(4)
4 = Σ1234(m2

2 +m2
n − 4)

(
−6s1

2∇µs2
2s

3
n∇µs4

n − (m2
2 +m2

n)s1
2s

2
2s

3
ns

4
n

)
(E.7)

so we see that the four-derivative couplings vanish and that the lagrangian relevant to the
computation is of σ-model type. This gives futher evidence that the complete fourth order
Lagrangian may share this feature.

We now move to the two-derivative couplings contribution. One proceeds on similar
grounds, so one finds

L(2)
4 = B1234

1 s1
2∇µs2

2s
3
n∇µs4

n +B1234
2 (s3

n∇µs1
2s

4
n∇µs2

2 + s1
2∇µs3

ns
2
2∇µs4

n) (E.8)

where

B1234
1 =

(
−4154598− 9778848n+ 2557080n2 + 3842368n3 + 2099672n4

+ 747584n5 + 72436n6 − 15520n7 − 2320n8
)
δ12
2 δ34

n

+
(
15766068n− 26840640n2 − 24890064n3 − 14042368n4 − 6850832n5 − 1800848n6

− 306328n7 − 51680n8 − 4640n9
)
C1234

+
(
12227124n− 30674496n2 − 22678224n3 − 10355968n4 − 5523728n5 − 1653392n6

− 306328n7 − 51680n8 − 4640n9
)
C1243

+
(
−73829940n+ 63354228n2 + 31719312n3 − 7703120n4 − 4855472n5 − 5440560n6

− 2625160n7 − 546968n8 − 67680n9 − 4640n10
)
S1234

+
(
−21314445n+ 7739229n2 + 9468900n3 + 2699116n4 + 1986388n5 − 45132n6

− 397090n7 − 118886n8 − 16920n9 − 1160n10
)

(Υ1234 + Υ1243)

/ (589824 (−1 + n) n (1 + n) (2 + n) (3 + n) (4 + n)) (E.9)
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B1234
2 =

(
−2412774− 10069152n+ 1661976n2 + 4035904n3 + 2172248n4

+ 741536n5 + 70924n6 − 15520n7 − 2320n8
)
δ12
2 δ34

n

+
(
7167540n− 39344448n2 − 10705872n3 + 1528448n4 + 364720n5 − 32576n6

− 127336n7 − 48512n8 − 4640n9
)
C1234

+
(
24254004n− 23165760n2 − 38230992n3 − 21466240n4 − 11121872n5 − 3298400n6

− 491368n7 − 54848n8 − 4640n9
)
C1243

+
(
−73774644n+ 71252340n2 + 30717072n3 − 13566800n4 − 5940656n5 − 5430768n6

− 2634232n7 − 549992n8 − 67680n9 − 4640n10
)
S1234

+
(
−31286157n− 6479139n2 + 22595748n3 + 9096940n4 + 5602612n5 + 1044780n6

− 405958n7 − 149162n8 − 18504n9 − 1160n10
)

Υ1234

+
(
−13084557n+ 23989725n2 − 3053148n3 − 4787348n4 − 1508876n5 − 1056420n6

− 392758n7 − 90122n8 − 15336n9 − 1160n10
)

Υ1243

/ (2359296 (−1 + n) n (1 + n) (2 + n) (3 + n) (4 + n)) (E.10)

One can again use eq. (E.6) to rewrite this as

L(2)
4 = B̃1234

1 s1
2∇µs2

2s
3
n∇µs4

n − (m2
2 +m2

n)B1234
2 s1

2s
2
2s

3
ns

4
n (E.11)

where

B̃1234
1 =

(
−48384 + 8064n+ 24864n2 − 5376n3 − 2016n4 + 168n5 + 42n6

)
δ12
2 δ34

n

+
(
1536n+ 122624n2 − 11712n3 − 113152n4 − 40896n5 − 3760n6 + 84n7

)
C1234

+
(
−96768n+ 16128n2 + 49728n3 − 10752n4 − 4032n5 + 336n6 + 84n7

)
C1243

+
(
−1536n− 219392n2+27840n3+162880n4+30144n5− 272n6+252n7+84n8

)
S1234

+
(
24192n− 28224n2 − 8400n3 + 15120n4 − 1680n5 − 1092n6 + 63n7 + 21n8

)
×

×(Υ1234 + Υ1234)/ (16384 (−1 + n) n (1 + n) (2 + n) (3 + n) (4 + n)) (E.12)

Finally we write down the contribution from the non-derivative terms. Using the symme-
tries 1↔ 2 and 3↔ 4, one gets

L(0)
4 = C1234

1 s1
2s

2
2s

3
ns

4
n (E.13)

where

C1234
1 =

[(
7147980 + 26899212n+ 16985757n2 − 13435136n3 − 13143972n4 − 7471824n5

− 1900172n6 + 112504n7 + 71646n8 − 3120n9 − 1160n10
)
δ12
2 δ34

n

+
(
−53553360n+ 48685104n2 + 203418228n3 + 112576768n4 + 63864432n5

+ 29953152n6 + 4595536n7 − 73904n8 − 82056n9 − 33120n10 − 4640n11
)
C1234

+
(
142904424n+19974528n2− 227914530n3− 21668294n4+43279688n5+22968216n6

+ 16668088n7 + 4026888n8 − 82780n9 − 129348n10 − 24560n11 − 2320n12
)
S1234

+
(
86418996n+ 54107328n2 − 88656273n3 − 36437731n4 − 10739036n5 − 9066804n6

+ 2398940n7 + 1888452n8 + 146386n9 − 46818n10 − 12280n11 − 1160n12
)

Υ1234
]

/ (1179648 (−1 + n) n (1 + n) (2 + n) (3 + n) (4 + n)) (E.14)

so combining equations (E.8), (E.11) and (E.13), one gets the simple expression for the
contribution from the quartic lagrangian in (4.22).
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